Optimized RESTORE+ oligonucleotides for an efficacious and safe RNA base editing treatment for Alpha-1 Antitrypsin Deficiency
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.} Endogenous ADAR-mediated RNA editing is a transformative technology enabling
precise A-to-l editing of mRNA.

! AIRNA’s RESTORE+ platform utilizes proprietary chemical modifications and optimized
GalNAc delivery to enhance RNA editing potency and durability in vivo.

! AIRNA’s research candidates (rAIR-100 family) target the SERPINA1 mRNA to treat
Alpha-1 Antitrypsin Deficiency (AATD) for precise A-to-l editing to correct the PiZ
mutation responsible for liver and lung pathology in AATD.

1 rAIR-100 achieved >90% editing efficiency with 20 nM in vitro in primary mouse
hepatocytes, as well as potent editing in iPSC-derived hepatocytes.

! rAIR-100 demonstrated >50% RNA editing and >30 uM M-AAT production with
subcutaneous GalNAc molecule, which led to a ~9-fold decrease in liver aggregates
and >17-fold increase in neutrophil elastase inhibition in hPiZ mouse model.

! Pharmacokinetics (PK) and safety in non-human primates (NHPs) show prolonged
exposure compared to mice, with no observable toxicity.

! AIRNA’s RESTORE+ platform enables rapid development of potent and safe RNA editing
therapies for diseases with high unmet need.

! AIR-001 is further optimized for improved potency and durability, expected to file CTA
in H2 2025.
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Human genetics informs target
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Left: PiZ patient-derived iPSCs were transfected with 1-100 nM unconjugated rAIR-100 in the presence or absence
of IFNa (1U/uL). RNA editing levels were determined by NGS 48 hours after transfection. Data are expressed as
mean * SEM. Right: Induction of ADAR1 p150 in Hela cells treated with IFNa, analyzed by Western blot.

SERPINA1 editing in vitro at low doses
(Primary PiZ mouse hepatocytes)

Improved SERPINA1 editing in vivo
(hPiZ B6 mice)

100+
5-
80 > 4-
> & 0.8 nM =
= 60+ T 3
= L
©
- S
&)
20+ o ! ...........................
0- 0~ —pe— ; -
X X X
L L& LK LK X O &
Q '®) Q> 'e) Q> '®) v QO &
NP NPR NPR AN Q @)
2 5 A A N\ @& A
O & O & O & 1% ((/6
<& <& <& <&
* Standard: Traditional chemistry and delivery (borrowed from siRNA) * Standard: Traditional chemistry and delivery (borrowed from siRNA)
* RESTORE+: AIRNA proprietary chemistry and optimized GalNAc delivery * RESTORE+: AIRNA proprietary chemistry and optimized GalNAc delivery

Adapted from Nakanishi et al., 2020; AAT levels calculated from Bornhorst et al., 2013, and Donato et al., 2015

Left: Primary hepatocytes isolated from hPiZ B6 mice were transfected with 0.8-20 nM rAIR-100. RNA editing levels
were determined 24 hours after transfection. Right: hPiZ B6 mice (n = 3/group) were treated with PBS or 10 mg/kg
GalNAc-conjugated rAIR-100 on days 0, 2, and 4. Day-7 RNA editing levels were quantified by NGS. Data are
expressed as mean + SEM.

NSG-PiZ mice (n = 3/group) were treated intravenously (IV) with a single dose of 1 or 2 mg/kg MC3-LNP-formulated,
rAIR-100 without GalNAc. Left: Liver RNA editing levels were quantified on days 1, 4, and 7 by NGS. Right: Serum M-
AAT levels were quantified by LC-MS/MS. Data are expressed as mean * SEM.
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NSG-hPiZ mice (n = 5/group) were treated subcutaneously with three doses of PBS or 5 or 10 mg/kg of GalNAc-
conjugated rAIR-100. Left: Day-7 liver RNA editing levels were determined by NGS. Middle: Serum levels of total
AAT and M-AAT were quantified by LC-MS/MS. Right: Percentage of M-AAT relative to total serum AAT,
determined by LC-MS/MS. Data are expressed as mean = SEM.

rAIR-100

Total AAT (LC/MS)

M-AAT (LC/MS)

50 w10 mg/kg 80- = 10 mg/kg
T Peak 65 uM - >Mme/ke

Peak 36 uM vehicle H Vehicle
= 40- 6ol
3 : |
= < 2
= S 40- P
> S 7
0 2 S
E =1
= 20

0 , | : |
Weeks Weeks
NSG/hPiz Study overview

AL ¥ ¥ ¥
GalNAc delivery & rrr | | I | I | |

(subcutaneous) S d7 d14 d21 d28 d35 da2 d49 d56
% Blood collection

* * * * * * * *

NSG-PiZ mice were treated with 3 loading doses of PBS (vehicle) or 5 or 10 mg/kg rAIR-100 (subcutaneous; dosed
on days 0, 2, 4, and 7), followed by 4 biweekly maintenance doses (n = 5/group). Dosing and blood collection are
represented by arrows and asterisks, respectively. Serum levels of M-AAT (/eft) and total AAT (right) were measured
weekly by LC-MS/MS. Data are expressed as mean = SEM.
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Left: Functional AAT (fAAT) levels after 3 initiation doses (Week 1) or after 3 initiation doses with biweekly
maintenance dosing (Week 8), quantified by a neutrophil elastase inhibition kit. The dashed line indicates the LLOQ of
2.05 umol/L. Right: Decrease in density of large (260 pum?) PAS-D-stained globules after 8 weeks of treatment with
rAlIR-100. n = 5/group. Data are expressed as mean = SEM.
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Evaluation of liver (left) and kidney (right) function parameters as assessed by serum chemistry in NSG-hPiZ mice
dosed with PBS or 10 mg/kg rAIR-100 over 8 weeks (n = 5/group). Data are expressed as mean = SEM.
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Left: Pharmacokinetics of rAIR-100 in NSG-PiZ mice (n = 3/group) and cynomolgus monkeys (n = 2/group) after
single-dose treatment at 10 mg/kg. Right: rAIR-100 levels were determined by an electrochemiluminescent (ECL)
hybridization assay. Data are expressed as mean + SEM.
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PiZ patient-derived iPSCs were treated with 100 nM (left) or 0.1-100 nM (right) unconjugated rAIR-100, or RNAIMAX
(control). Left: Off-target editing was evaluated by RNA-Seq. Mean editing levels of 3 samples are shown. Right:
Bystander editing of adenosines within a 66-nt window surrounding the target site, evaluated by NGS. All
surrounding sites exhibited RNA editing levels below 1%.
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O AATD
GalNAc-conjugated rAIR-100 research
molecules demonstrated >50% RNA editing
and >30 uM M-AAT production, which led
to a ~¥9-fold decrease in liver aggregates
and >17-fold increase in neutrophil elastase
inhibition in hPiZ NSG mouse model.

OAIRNA RNA editing molecules are optimized
for in vivo potency, effectively engage p110
isoform of ADAR1, and precisely edit the PiZ
mutation with no detectable off-target edits.

Safety & Pharmacology

O Future
AIRNA’s product candidate, AIR-001, is
further optimized for improved potency
and durability, expected to file CTA in H2
2025.

OGaINAc-conjugated rAlIR-100 research
molecules did not result in significant safety
findings at high doses in mouse or NHPs, and
showed up to 6.7x increase in liver exposure
from mouse to NHPs.
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